Langsam kriege ich das Gefühl, das wir das gleiche meinen und nur bei den Bezeichnungen nicht zusammenkommen. Ich werde mal versuchen mein Behauptungen klar herauszustellen, damit du sie einzeln abschießen kannst.
Zu deinem Formantentest: Ich kam nicht dazu meine PC3 zu besuchen (ist grade nicht zuhause). Ich habs dafür mal schnell mit fm4 (Reaktorensemble) ausprobiert. Da klappt das wunderbar. Ein Blick in die Eingeweide des Ensembles zeigt, dass die Operatoren genau aufgebaut ist die die Vorgeschlagene Struktur auf der PC3 (Modulation der Phase des Tabellenauslesens durch eine externes Signal).
Erstmal muss ich wie üblich ein Bisschen Wort klauben. Erstmal will ich hier sauber die Frequenz definieren. Normalerweise würde man das ja über eine Spektrale Darstellung (z.B. aus Fourier), oder einfacher über den Kehrbruch der Periodendauer machen. Beide Definitionen sind leider nicht mehr wirklich tauglich wenn man die Frequenz schneller ändert als eine Periodenlänge. Hier ist es am sinnvollsten die Frequenz als Ableitung der Phase nach der Zeit zu definieren (="Geschwindigkeit" der Phasenänderung=Auslesegeschwindigkeit). Womit wir bei deinem ersten Punkt sind:
Summa schrieb:
... deine Erklaerungen aendern nichts an der Tatsache dass dein Offset nicht die Abspielgeschwindigkeit aendert sondern die Phase relativ zur aktuellen Postition in der Shaper Wellenform verschiebst (im extremfall springst), das ist was anderes...
Da hast du selbstverständlich Recht! Würde ich die Abspielgeschwindigkeit mit dem Modulator ändern hieße das, dass ich die Frequenz moduliere. Das wäre genau lineare FM. Zugegebenermaßen habe ich manchmal das unangebrachte Wort FM für das Gezeigte verwendet, da bin ich aber in guter Gesellschaft, Yamaha tat das auch.
Damit:
Behauptung 1: Das was ich tu ist keine lineare FM. (Ich denke da sind wir uns einig)
Nun kann man freundlicherweise recht einfach testen ob ein Synthesizer lineare FM macht. Das einfachste ist man nimmt 3 Operatoren, die alle die gleiche Frequenz haben (und in Phase starten). Nun moduliert Operator 1 den 2. und der den 3. Damit kriegt aber Op2 einen DC Offset (positive und negative Hälfte der Wellenform werden unterschiedlich schnell abgespielt). Da aber Op2 die Frequenz von Op1 moduliert ist der danach verstimmt.
Zumindest FM8 und der Fs1r zeigen dieses Verhalten nicht, haben also KEINE lineare FM. Damit wird im Umkehrschluss auch nicht die Abspielgeschwindigkeit (also Frequenz) moduliert.
Damit:
Behauptung 2: Die Yamaha FM Synthese ist in Wirklichkeit eine Phasenmodulation.
Zugegeben, die Behauptung steht erst mal auf wackligen Beinen. Könnte ja auch was anderes sein. Hier hilft allerdings dann doch der Blick ins Patent (siehe oben). Wie üblich gilt: Wir brauchen das erste Bild und die erste Formel. Fangen wir mit dem Bild an. Neben der
Summa schrieb:
technisch[n] Implementierung der Sinus Operatoren, mit Frequenztabellen etc. zur einfachereren Umsetzung in Chip Form
sind da nämlich doch noch 1-2 Details abgebildet. Ein wichtiger Baustein ist der Accumulator. Der macht im Prinzip aus einer Frequenz eine Phase, ist also ein Integrator. Nun fällt aber auf, dass am Addierer einmal eine Phase anliegt (2. Zeile) und einmal ein Sinus (1. Zeile). Diese Summe wird als Ausleseindex, also als Phase verwendet. Damit modifiziert der Sinus direkt die Phase.
Damit:
3. Behauptung: Bei einem Operator in der Yamaha FM Synthese wird zur Phase eines Sinus ein Eingangssignal (im oberen Textblock ein Sinus) hinzuaddiert.
Und von meinem letzten Post:
4. Diese Struktur lässt sich 1 zu 1 auf einen VAST Algorithmus abbilden
Zur Verdeutlichung nochmal die Formel aus dem Patent (eine muss gehen):
F = A * Z { w_c * t + I*G(w_m * t)}
(w=Omega; _ steht für indizes; Summe + index i weggelassen)
mit A=Amplitude, w_c bzw. w_m Carrier bzw Modulator Frequenz, I Modulationsindex, Z,G "Vordefinierte mathematische Funktionen" (meistens Sinus).
Schaut in Text etwas unübersichtlich aus, heißt aber nix anderes, als das wir die Phase modulieren.
6. Behauptung: Das schaut bis auf meine leichte Schlampigkeit genau wie das Signal aus das ich für den Kurz berechnet hab.
Nun endlich:
7. Behauptung: Bis auf fehlende Feedbackschleifen lässt sich die Synthese eines Yamaha FM Synthesizers auf einer Kurzweil PC3 nachbilden.
Ich hoff mal ich werde jetzt nicht wegen exzessiven Gebrauch eines gewissen Markennahmen Abgemahnt...
Jedenfalls bleibt immer noch die Frage, was der ganze Käse nun mit FM zu tun hat. Hier hilft es wenn man sich schnell an den Anfang zurückerinnert, wo ich mal behauptet habe, das die Frequenz so was wie die Ableitung der Phase ist. Damit müsste man, wenn man die Frequenz mit einer gewissen Funktion moduliert die Phase einfach nur mit dem Integral der Funktion modulieren um den Gleichen Effekt zu erreichen. Umgekehrt gilt natürlich auch, das eine Modulation der Phase einer Modulation der Frequenz mit der Ableitung der Modulationsfunktion entspricht.
Daher rührt auch die Andersartigkeit der Phasenmodulation wenn man die Phase nicht stetig (z.B. mit einem Rechteck) moduliert. Da wird dann nämlich die Ableitung (und damit die entsprechende lineare FM) kurz mal unendlich...
Ein Sinus ist hingegen recht Wohlverhalten. Da führt das Ableiten eigentlich bloß zu einer Phasenschiebung und einem Frequenzabhängigen Vorfaktor.
Genug gelabert für heute (der Mist wird immer länger). Ich bin vermutlich die nächsten Tage nicht in Interneteichweite. Geniest die Ruhe...