Per A/D digitalisierte Signale sind prinzipbedingt bandbegrenzt. Damit ist die Gruppe der Signale die durch die drei Punkte gehen können schon sehr eingeschränkt (das ist im Prinzip genau das was "bandbegrenzt" eben heißt).serenadi schrieb:Woher weiß die Software, welche Kurvenform vorliegt, wenn sie nur 3 Meßpunkte pro Periode hat ?
Ich weiß nicht von woher das stammt aber das ist entweder sehr ungeschickt formuliert (was genau ist mit F gemeint und in welcher Einheit?) oder schlichtweg falsch (s.a. den "DFT á Pied" Artikel auf http://www.dspdimension.com zu diesem Thema). Das Nyquist-Intervall ist korrekt [-pi, +pi] oder [0, 2pi], je nachdem wie man zählt. Außerdem ist die maximale im Signal enthaltene Frequenz nicht primär ausschlaggebend, die Bandbreite ist der entscheidende Faktor.serenadi schrieb:Ein bandbeschränktes Signal x mit einer maximalen Frequenz F:=fmax ist eine Funktion, für welche die Fouriertransformierte existiert und diese Fouriertransformierte außerhalb des Intervalls [ -2piF,2piF] Null ist.
Genaugenommen handelt es sich um eine angenäherte sin(x)/x (auch "sinc" genannt) Rekonstruktion, nicht um eine "Sinusdarstellung".Fetz schrieb:Die Sinusdarstellung ist im Prinzip die 'richtigere', nämlich die nach der korrekten Rekonstruktion.
Das habe ich noch immer nicht verstanden. Daß es "schlechte" (in welcher Hinsicht?) Filter gibt kann ich mir noch einigermaßen vorstellen, aber wie das mit der Sample Rate zusammen hängt ist mir schleierhaft (vielleicht liegt's ja an mir). Kannst Du das mal erklären was Du damit meinst?Fetz schrieb:Innerhalb von Wavelab könnte es auch ein Workaround bei schlecht implementierten Filtern (VSTs) sein.
neuronaut schrieb:Ich weiß nicht von woher das stammt aber das ist entweder sehr ungeschickt formuliert (was genau ist mit F gemeint und in welcher Einheit?) oder schlichtweg falsch (s.a. den "DFT á Pied" Artikel auf http://www.dspdimension.com zu diesem Thema). Das Nyquist-Intervall ist korrekt [-pi, +pi] oder [0, 2pi], je nachdem wie man zählt. Außerdem ist die maximale im Signal enthaltene Frequenz nicht primär ausschlaggebend, die Bandbreite ist der entscheidende Faktor.serenadi schrieb:Ein bandbeschränktes Signal x mit einer maximalen Frequenz F:=fmax ist eine Funktion, für welche die Fouriertransformierte existiert und diese Fouriertransformierte außerhalb des Intervalls [ -2piF,2piF] Null ist.
neuronaut schrieb:...aber wie das mit der Sample Rate zusammen hängt ist mir schleierhaft (...). Kannst Du das mal erklären was Du damit meinst?
Sorry, aber wir sprechen hier von Pfusch, richtig?Fetz schrieb:Tim hatte das Beispiel eines resonanten Tiefpassfilters angeführt der oberhalb 1/8 fs anfängt instabil zu werden.
Fetz schrieb:![]()
Ein Rechteck mit 9Khz besteht aus folgenden harmonischen (=Sinustönen=Fourierzerlegte *METZEL*):
9khz, 1.Harmonische auch Grundton genannt
(18khz, 2. Harmonische entfällt beim Rechteck, ein Sägezahn hätte hier was)
27khz 3. Hamonische
(36khz 4. Hamonische, kein Pegel, s.o. )
45kHz 5. Hamonische
usw.
mehr Töne kommen nicht vor.
Die 3. Harmonische ist eine Oktave und eine Quinte über dem Grundton.
Richtig (beim Kompressor eher nicht, aber das kommt auf die Implementierung an). Im Prinzip gilt das immer, wenn nach dem Samplen Frequenzen erzeugt werden, die gegen die Bandbegrenzung verstoßen. Normalerweise sollte das aber innerhalb des Algorithmus selber schon mittels eines entsprechenden Anti-Aliasing-(Anti-Imaging Post-) Filters kompensiert werden, denn man kann nicht davon ausgehen, daß die Ziel-Sample Rate höher ist als die mit der man arbeitet.Drumfix schrieb:Hohe Samplingraten sind immer dann nötig, wenn man Eine Bearbeitung macht, die zusätzliche Obertöne generiert, die als Aliasing wieder ins Audiomaterial zurückgespiegelt werden.. Das sind bei einem Masteringwerkzeug wie WL im wesentlichen Kompressor, Limiter, Exciter (ja, Moogulator, Schwurbel!) und natürlich alle Arten von Verzerrern (beim Mastering aber wohl eher unwichtig).
Ich glaube nicht, daß das ein Grund ist, es sei denn beim Filter-Design oder bei der Implementierung stimmt was nicht. Was ich mir aber vorstellen könnte (das fällt mir gerade ein wo ich Deinen Beitrag lese) ist, daß wenn man einen Filter mittels BLT aus dem s-Domain in den z-Domain bringt (also z.B. einen analogen Prototypen digital umsetzen will) man bei höheren Sampling-Raten die Nichtlinearität am oberen Ende der Frequenzskala nach oben verschieben kann. Das ist zwar von keiner praktischen KonSequenz ("hört man eh nicht") aber denkbar wäre es schon. Trotzdem eine eher praxisferne Anwendung, weil auch hier der Filter selber entsprechend implementiert sein sollte.Drumfix schrieb:Die Sache mit Filter + höheren Samplingraten betrifft im wesentlichen parametrische Eqs und deren Verhalten nahe der halben Samplingfrequenz (die Verstärkung geht da nämlich gegen 0). Sieht man am besten, wenn man mal im Voxengo Glis<a href="https://www.sequencer.de/specials/sequencer.html">Sequencer</a> zwischen Low und High Quality hin und herschaltet. Ob bei sonstigen rekursiven Filtern ein Vorteil
durch die den geringeren Abstand bei den Rückkoplungssamples entsteht weiss ich jetzt aber auch nicht.
Du meinst wahrscheinlich eine angenäherte Sinc-Impulsantwort als Anti-Aliasing-Filter. Vorsicht bei Sinc, durch das Brickwall-Verhalten gibt es den Gibbs-Effekt an der Grenzfrequenz der eigentlich unerwünscht ist. Da muß man vorsichtig austarieren (Kaiser-Window etc.) daß das dann noch gut klingt und in dem oberen Frequenzbereich nicht mehr kaputt macht als es bringt...Drumfix schrieb:PS: Wer ne Linuxkiste hat mit Jack drauf, kann von mir nen Patch haben, mit dem man einen Oversamplingfaktor für die interne Verarbeitung einstellen kann + ein SINC-Filter als Aliasingfilter.
HPL schrieb:Hello Leute
Beim neuen wavelab ist angegeben das es bis 384 kHz samplerate unterstütz. Jetzt frag ich mich wie sinnhaft das eigentlich ist. bitte keine 44.1,88.2,96,192........ debate. Mich interesierts nur da die wandler ja nur bis 192 khz gehen oder gibts schon so schnelle wandler/systeme? Wenn nein was für einen sinn macht das dann? ist ja bei 192khz für mich schon fraglich obs sinn macht
Die Ortung erfolgt im wesentlichen im Frequenzbereich von 'einstelligen' kHz, was aufgrund der Kopfgeometrie auch plausibel ist.intercorni schrieb:Meines Wissens nach haben hohe Frequenzen auch einen Bezug zur räumlichen Ortung von Klängen und Geräuschen.
Mit welchem Organ?intercorni schrieb:Auch wenn diese hohen Spektren nicht mehr gehört werden können, werden sie doch wargenommen.
Selbstverständlich. Die Bandgrenze ist eine einfache Sache, die man auch Laien erklären kann. Ein tiefe Bandgrenze ist auch prima zu hören. Und 'mehr ist besser' ein Zusammenhang den jeder Werbefuzzi rüberbringt.intercorni schrieb:Also hat die hohe Auflösung schon eine Berechtigung, wie ich finde.
Das stimmt. Es gibt auch schon sehr gute "Tricks" in dieser Richtung, viele davon sind aber für den "Durchschnittshörer" nicht bezahlbar.Fetz schrieb:Die Ortung erfolgt im wesentlichen im Frequenzbereich von 'einstelligen' kHz, was aufgrund der Kopfgeometrie auch plausibel ist.
Dieser Bereich wird von aktuellen Wiedergabeanlagen allerdings deutlich verfälscht wiedergegeben, so das eine Mange Tricks nötig sind (ein ganz guter und inzwischen etablierter war es zwei Lausprecher zu nehmen) um einen räumlichen Eindruck vorzugaukeln. Da gibt es noch eine Menge zu verbessern, sprich bessere Tricks zu finden.
Ich denke das hat intercorni mißverstanden. Selbstverständlich werden diese hohe Frequenzen gehört. Für die Qualität der Ortung ist die Bandbreite des Signales ganz entscheidend.Fetz schrieb:Mit welchem Organ?intercorni schrieb:Auch wenn diese hohen Spektren nicht mehr gehört werden können, werden sie doch wargenommen.
...auch wenn das nicht immer stimmt. Ich glaube übrigens, daß man einem "Laien" durchaus alles erklären kann, wenn man sich ein bischen Mühe gibt. "Laie" ist nicht gleichzusetzen mit "dumm".Fetz schrieb:Selbstverständlich. Die Bandgrenze ist eine einfache Sache, die man auch Laien erklären kann. Ein tiefe Bandgrenze ist auch prima zu hören. Und 'mehr ist besser' ein Zusammenhang den jeder Werbefuzzi rüberbringt.
Absolut!Fetz schrieb:Ärgerlich, weil die meisten würden sicher lieber an Dingen arbeiten, die den Klang relevant verbessern.
Naja, man darf nicht vergessen daß bei den Tonreglern einer herkömmlichen Stereoanlage mit 6dB/Oct. abgesenkt wird. D.h. Du hast bei einer Eckfrequenz von 14kHz eigentlich schon alles mit drin.Fetz schrieb:Und da ist viel zu tun. Höre dir mal ein akustisches Instrument live an und vergleiche mit deiner Anlage. Dann drehst du an deiner Anlage mal alle Höhen über 14kHz raus. Dieser Unterschied ist doch im Vergleich zum echten Instrument vergleichsweise lächerlich.
Folge dem Video um zu sehen, wie unsere Website als Web-App auf dem Startbildschirm installiert werden kann.
Anmerkung: Diese Funktion ist in einigen Browsern möglicherweise nicht verfügbar.